3D Printing for Automated Equipment

3D Printing for Automated Equipment

Example machine demonstrating the use of 3D Printing for automated equipment.

Forerunner 3D Printing has been working with customers since day one on their 3D Printing for automated equipment needs. It started with a customer approaching our sister company, DeWys Engineering, with a challenging end of arm tool that they needed designed and built on a tight deadline.3D Printing for Automated Equipment After evaluating the tooling requirements and assessing the options available to manufacture the end of arm tool components, it was decided to evaluate the potential for using 3D Printing to produce some of the more complicated parts of the end of arm tool. Test gripper fingers were 3D Print out of Nylon on F3DP’s HP Multi Jet Fusion 4200 3D Printer, the parts ended up being very strong, wear resistant, and able to hold up to 300 Degree temperatures of the parts it was handling. Due to how well the test parts worked as well as lower cost, and shorter lead time then traditional manufacturing such as CNC and EDM equipment that the final version of the end of arm tool would use as many MJF 3D Printed components as was possible.

After this early success the Designers at DeWys Engineering began to look across the the various automated equipment projects they were contracted to work on for other instances where 3D Printing for machine builders made since. Over time, they tested many other applications for using 3D Printing for Automated Equipment, the following are some examples of the applications they have had success with.

3D Printed Nesting Detail –

3D Printing for Automated Equipment

These 3D Printed nesting details are perfect for parts that have complex geometries that need to be held securely while other operations are taking place in the automated machine like clip driving, degating, inspection, etc. These 3D Printed nests can achieve an accuracy of +/-.010″ over a length of 6 inches and dowel holes used for locating the nest onto the machine can be printed directly into the part. If the nest requires holes to be tapped in it for mounting other details or sensors, using key-locking inserts is recommended. Using 3D printed nests to hold class “A” parts is also a possibility when one of these nests is combined with a process called flocking that will keep the nest from scratching the part when it is loaded into it. If you have questions on if 3D Printing for Automated Equipment will work for your specific nesting application contact one of our Sales Engineers to get feedback on your project requirements.

3D Printed End Of Arm Tooling Gripper –

For more information on 3D Printed End Of Arm Tooling Grippers check out our page specifically on this topic. Here are some examples of EOAT components that we have worked on for customers:

3D Printed Machine Details –

There are lots of other details that can be 3D Printed for Automated Equipment application. From vision system and sensor mounts to display mounts and guarding details, here are some examples:

Frequently ask question by our machine builder customers –

Can MJF 3D Printed parts hold up to oils, grease, or cutting fluid?

Yes, we have submerged these MJF 3D Printed parts in light oils and coolants for extended periods of time. They do not absorb any of these fluids and can be cleaned with a can of break cleaner and a rag. Click here for a page specifically dedicated to the chemical resistance of MJF parts and what they can hold up to.

How do MJF 3D Printed parts wear over time?

The Nylon is extremely tough and has held up well to the testing we have done with using it to nest steel parts. For more detailed information on this question check out our page on MJF part wear.

How strong are MJF 3D Printed parts?

We did a research project to test various MJF 3D printed thread sizes for both thread pull out force as well as material tensile strength. You can find this information here.

I am working with a part that has a Class A finish, will a MJF 3D Printed component scratch my part when it comes in contact with it?

This is another research project we are working on currently. Early indications are that an MJF component should be flocked or pasti-diped in order to 100% guarantee that a Class A finish is not damaged. We will post additional information on this after the conclusion of our wear test study.

How do you flock an MJF 3D Printed part to achieve a soft touch finish?

Flocking is a process by which the part is covered in a chopped velvet to give the part a soft finish, here is an example video that shows how the flocking process is done:

How accurate are MJF 3D Printed parts? Can threads be put into MJF 3D Printed parts?

Yes, there are many ways to put threads into these parts, here are a few examples we have tested and had success with for other customers:

3D Printing for Automated Equipment

Threads that were printed directly into the part. Testing has shown that 1/2-13 printed threads will hold over 600 LBS in tension.

3D Printing for Automated Equipment

Threaded inserts that were pressed into holes printed in the part

3D Printing for Automated Equipment

Keensert inserts that were threaded into holes that were printed in the part and then tapped.

3D Printing for Automated Equipment Design Guide –

Here is a link to our Multi Jet Fusion Parts Design Guide (this is the process we use to make details for machine builders), it will offer you useful design tips for this 3D printing process  as well as answers to many frequently asked questions about about the HP Multi Jet Fusion 3D printing process:

Click here to go to the 3D Printing Machines & Materials page

Have questions?

Contact us:

Sales@Forerunner3d.com – 231.722.1144

About. Services. Contact. Industrial Codes.

US Government CAGE Code: 805Z7

Locally owned and operated from Coopersville Michigan.

logo-horizontal google-plus facebook instagram twitter youtube3 linkedin2 email linkedin